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Abstract
Purpose Despite growing access to data, questions of Bbest
fit^ data and the appropriate use of results in supporting deci-
sion making still plague the life cycle assessment (LCA) com-
munity. This discussion paper addresses revisions to assessing
data quality captured in a new US Environmental Protection
Agency guidance document as well as additional recommen-
dations on data quality creation, management, and use in LCA
databases and studies.
Approach Existing data quality systems and approaches in
LCAwere reviewed and tested. The evaluations resulted in a
revision to a commonly used pedigree matrix, for which flow
and process level data quality indicators are described, more
clarity for scoring criteria, and further guidance on interpreta-
tion are given.
Discussion Increased training for practitioners on data quality
application and its limits are recommended. A multi-faceted
approach to data quality assessment utilizing the pedigree
method alongside uncertainty analysis in result interpretation
is recommended. A method of data quality score aggregation
is proposed and recommendations for usage of data quality
scores in existing data are made to enable improved use of

data quality scores in LCA results interpretation. Roles for
data generators, data repositories, and data users are described
in LCA data quality management. Guidance is provided on
using data with data quality scores from other systems along-
side data with scores from the new system. The new pedigree
matrix and recommended data quality aggregation procedure
can now be implemented in openLCA software.
Future work Additional ways in which data quality assess-
ment might be improved and expanded are described.
Interoperability efforts in LCA data should focus on descrip-
tors to enable user scoring of data quality rather than transla-
tion of existing scores. Developing and using data quality
indicators for additional dimensions of LCA data, and auto-
mation of data quality scoring through metadata extraction
and comparison to goal and scope are needed.

Keywords Life cycle inventory data . Data quality . Pedigree
matrix . Data quality system . Data quality indicators . Data
quality assessment . Data quality management

1 Introduction

The average life cycle assessment (LCA) model combines
thousands of data points in order to describe a product system.
LCA practitioners and generators are very familiar with the
labor and time that accompanies data collection and process-
ing. While the amount of life cycle inventory data is growing,
and there are efforts to improve access to LCA data, questions
of Bbest fit^ data and the appropriate use of results in
supporting decision making still plague the LCA community.
Ultimately, these are questions of data quality.

A number of authors have called out data quality as an
aspect limiting the power and reliability of LCA results
(Björklund 2002; Coulon et al. 1997). In a survey of
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unresolved problems in LCA, data quality was one of the
problems identified to be only partially solved by existing
methods (Reap et al. 2008). Key weaknesses of the current
methodologies for data quality assessment (DQA) in LCA
include limited coverage of data quality, limited aggregation,
one-dimensional analysis of data quality (e.g., process or
flow), and lack of reproducibility of results (Weidema 1998;
Cooper and Kahn 2012). Another reason that data quality
continues to be an elusive element in LCA is the lack of clarity
surrounding the practice of data quality management. We dis-
tinguish between the terms data quality, data quality assess-
ment, and data quality management to better clarify the multi-
dimensional concept of data quality.

1.1 Data quality in LCA

Consideration of guidelines for data quality in LCA can be
traced at least as far back as 1992 (Fava 1992). The interna-
tional standards organization (ISO) maintains two standards,
ISO 14040 and ISO 14044, that define data quality within
LCA as

B[the] characteristics of data that relate to their ability to
satisfy stated requirements^
(ISO 2006a, b)

ISO establishes ten key characteristics of data quality: time-
related coverage, geographical coverage, technological cover-
age, precision, completeness, representativeness, consistency,
reproducibility, sources of the data, and uncertainty of the
information (ISO 2006a, b). In 2011, in an effort to provide
further guidance, the Global Guidance Principles for LCA
Databases (Shonan Guidance Principles) published further
definition and suggested methods for addressing data quality
(UNEP/SETAC 2011). The Global Guidance Principles sim-
ilar to the ISO standards recommends ten data quality indica-
tors and provides definitions for each of these indicators, but
only states that a dataset developer is responsible for preparing
a self-assessment of the data against these indicators. Neither
ISO 14044, nor the Global Guidance Principles provide
guidelines for data quality assessment. The US EPA defines
data quality assessment as

BThe scientific and statistical evaluation of data to deter-
mine if data obtained from environmental operations are
of the right type, quality, and quantity to support their
intended use.^
(US EPA 2000)

Data quality assessment in the context of LCA has been
defined as a comparative analysis of the data quality charac-
teristics (DQCs) against the data quality goals, or qualitative
statement that defines specifications for the adequacy of data

used in a life cycle inventory (LCI) or for certain LCI param-
eters (Bakst et al. 1995). This process of determining adequa-
cy of data relevant to goals or purpose is related to the concept
of Bfitness for purpose.^ One of the objectives of the Global
Life Cycle Data Access network (GLAD) metadata working
group is to select indicators for assessing fitness for purpose
(Canals et al. 2016). The GLADmetadata working group also
distinguishes between types of indicators, either as intrinsic or
contextual (Ciroth et al. 2017). Intrinsic data quality is an
inherent data property that describes the data quality (Wang
and Strong 1996). Contextual data quality is an aspect of the
data that is situationally dependent (Wang and Strong 1996).
Reliability is classified as an intrinsic indicator because users
are always looking for believable, objective data with high
accuracy and from a reputable source. Whereas, representa-
tiveness indicators are contextual because they are situation-
ally dependent on the goal and scope of the project.

1.2 Approaches to data quality assessment in LCA
databases

Of approximately 74 databases with life cycle data identified
by the authors in a previous study that surveyed LCI, input-
output and carbon footprinting databases, approximately 16
(22%) include data quality scores or other information (Edelen
and Ingwersen 2015). Even fewer existing databases provide a
description of their data quality assessment methods. Of those
methods or data quality systems that are in current use, they
can be classified as either qualitative or semi-quantitative.
There are two dominant examples of semi-quantitative
methods: the pedigree matrix approach utilized by ecoinvent,
and the data quality ranking system utilized by the
International Reference Life Cycle Data System (ILCD). A
qualitative pass/fail method (Cooper and Kahn 2012) is used
by the USDALCACommons. Thismethod can be considered
a binary qualitative pedigree matrix approach.

The two types of pedigree matrix methods use data quality
indicators (DQI) linked with characteristic of the data quality,
often related to the ISO 14044 DQCs. Table 1 shows the
presence of the ISO 14044 DQCs in these three sources.

The qualitative assessment method used in the USDALCA
Commons includes seven indicators to address nine out of ten
DQCs (excluding consistency) as defined by the ISO stan-
dards (Cooper and Kahn 2012). Indicators are applied at the
flow level with no available methodology for aggregation.
The system proposes a two-tiered scale for scoring data, as
either pass or fail, using a score of A for pass or B for fail. The
non-numeric system was developed to improve reproducibil-
ity of scores and allow for a broader adoption of DQAwithin
the LCA community (Cooper and Kahn 2012). The ILCD
DQA method includes six indicators, applied at the process
level, scored based on compliance with a set of pre-defined
standards for each indicator (EC JRC 2010). Indicator scores
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can vary from 1 (very good) to 5 (very poor or unknown), with
an option of a B0^ score for not applicable indicators. In the
ILCD system, scores for each DQI are aggregated across in-
dicators to formulate an overall data quality ranking score for
the process. This process overall data quality score is then
used in a three-tiered classification system: high quality, basic
quality, and data estimate. The pedigree matrix DQA method
used by ecoinvent was originally described by Weidema and
Wesnaes (1996) and has evolved through the development of
the ecoinvent database (Wernet et al. 2016; Weidema et al.
2013; Frischknecht et al. 2007). The DQIs in the pedigree
matrix are applied at the flow level, or in other words, to each
individual exchange in a unit process, and like the ILCD sys-
tem, use a 1–5 scoring system, where 1 is the best and 5 is the
poorest.

1.3 Reproducibility of data quality scores

As metrics that can be used by third parties to evaluate the
quality of LCI datasets, data quality scores should be repro-
ducible. Previous studies have shown problems in data quality
score reproducibility, which has been attributed to lack of
clarity in terminology and poor training in methodology
(Weidema 1998). Following a similar test described by
Weidema (1998), we conducted a data quality scoring repro-
ducibility test among LCA practitioners at US EPA using two
of the DQAmethods described above. The details of the meth-
odology and results of this reproducibility test are described in
the Electronic Supplementary Material. The result of the re-
producibility test suggests a lack of fundamental knowledge in

applying data quality to LCI datasets. The poor reproducibility
in the test of both DQA assessment methods suggests that the
problem of reproducibility still exists, and that efforts are still
needed to improve it.

1.4 Aggregation of data quality scores and usage
to perform uncertainty analysis

DQA methods have the potential to inform the practitioner
about quality issues that are relevant to the LCA results in
order to determine how well the underlying LCI data and
model fulfill the goal and scope of the study. When models
are composed of many (3 or more orders of magnitude for
large background databases) processes, it becomes impractical
to examine all processes directly with the intention of drawing
conclusions on data quality. Even in smaller models, not all
processes have equal quantitative influence (gravity) on the
result. Therefore, there needs to be a method of examining
data quality alongside results that aggregates data quality
scores in a manner acceptable with LCA conventions. May
and Brennan (2003) provide a practical comparison of some
of the proposed approaches to data quality score aggregation
across a LCI in an application to a comparative electricity
LCA. Particularly, the authors describe and test methods by
Wrisberg et al. (1997) and Rousseaux et al. (2001). Wrisberg
et al. proposed calculating an average data quality score for a
particular flow in the LCI giving equal weight to each ex-
change where the flow appears, as in Eq. (1):

∑n
eDQSi; f ;e

n
¼ LCIDQS f ;i ð1Þ

where DQS is the flow data quality score for a given DQI,
e.g., data reliability, in a given exchange e in a process in the
LCI (where an exchange is the use of a flow in a process), n is
the number of exchanges of the specified flow, f, in the LCI,
and LCIDQS is the LCI data quality score for a given flow, f.

Rousseaux et al. describe a similar data quality aggregation
procedure, but they weight each data quality score by the
quantity of the associated exchange, as in Eq. (2):

∑n
e

DQSi; f ;e � FQe

LCI f
¼ LCIDQS f ;i ð2Þ

where DQS and LCIDQS are defined in Eq. 1, FQe is the
flow quantity (e.g., 100 kg) for the given exchange, e, and
LCIf is the LCI life cycle flow quantity for the given flow, f.

Rousseaux et al. further use these scores in relation to a
target data quality score to calculate Bcoefficients of accept-
ability^ and Bvariability.^ This approach is similar to the ap-
proach used in the ILCD Handbook where acceptability of
datasets is based on the data quality scores being better or
equal to the target score (EC JRC 2010).

Table 1 Comparison of ISO 14044 data quality characteristics
captured by data quality indicators from three LCI data providers

ILCD ecoinvent USDA

Characteristics

Time-related coverage x x x

Geographic coverage x x x

Technological coverage x x x

Precision xa x

Completeness x x x

Representativeness x x x

Consistency x

Reproducibility xb

Sources of the data x xb

Uncertainty of the information xa xc x

a Uncertainty is combined with precision
b Source of the data is combined with the reproducibility
c Uncertainty is calculated from the indicators, but is not a separate
indicator
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A very conservative approach, not known to have been
described in the literature, would be to take the worst score
for a given criterion of any of the flows in the LCI.

max DQSið Þ ¼ LCIDQS f ;i ð3Þ

Attention in the literature on methods of aggregating data
quality scores has largely shifted in the last 5 years from ag-
gregation methods for DQIs towards the use of data quality
scores with uncertainty analysis. A method that appears to be
subject to the most recent attention in the literature is to use
scores from the pedigree matrix along with a flow amount to
derive measures of spread that can be used in uncertainty
analysis, referred to as a probability distribution function
method (van den Berg et al. 1999), first proposed by
Kennedy et al. (1996). Ecoinvent has adopted this type of
approach by ascribing a total uncertainty value based on the
uncertainty associated with the intrinsic variability and ran-
dom error of the indicator and the uncertainty associated with
the imperfect representativeness of the data (Ciroth et al. 2013;
Muller et al. 2016). Gregory et al. (2016) and Noshadravan
et al. (2013) propose a methodology for adapting uncertainty
to evaluate comparative LCA scenarios with the inclusion of
parameter uncertainty calculated in a similar method to
ecoinvent. While this method provides a convenient and very
direct way of aligning data quality with result interpretation,
some argue that there is no sound justification for creating
probability distributions from DQIs (van den Berg et al.
1999; May and Brennan 2003).

1.5 Data quality management

DQA is a method for assessing the characteristics and is dis-
tinct from data quality management. Data quality manage-
ment is a rapidly developing field within Information
Science, driven by the need to harness data for the purpose
of gleaning information to better support decisions (Tayi and
Ballou 1998). Data quality management in LCA requires a
framework for defining, assessing, storing, and providing ac-
cess to data quality information and requires a multi-
dimensional perspective on data quality.

1.5.1 Levels

LCA data are complex and contain a number of levels at
which data quality could theoretically be applied. Neither
the ISO LCA standards nor Global Guidance Principles
for LCA databases describe at which level (e.g., model,
unit process or flow) data quality should be applied van
den Berg et al. (1999), in a thorough study of data quality
aspects of LCA, describe various levels of LCA data to
which data quality assessment could be applied, including

flow, process, and system (or model). Those levels are
synthesized in Fig. 1.

1.5.2 Roles

Recently through the work of the GLAD metadata working
group, the multi-role perspective of data quality has been de-
scribed as a Janus face. The Janus face recognizes the different
roles of the data developer and data user and the need for data
quality management that encompasses a multi-role perspec-
tive (GLAD WG3 2016).

This paper builds on the Janus face of data quality by
adopting a three-role data quality management perspec-
tive. These three roles are identified as follows (Wang
et al. 2002):

1. Data generator: those who create, collect, or supply data.
2. Data repository/custodian: those who design/develop data

guidelines and data system infrastructure; and maintain
public access to the data.

3. Data user: those who utilize data, which may involve
additional aggregation and integration.

1.5.3 Phases

Use and application of data quality in LCA may extend
across the four phases of the LCA study (ISO 2006a, b),
including the definition of data quality goals during the
goal and scope phase; data quality documentation and
assessment of inventory data during the inventory phase;
data quality documentation and assessment of the life cy-
cle impact assessment methods in the impact assessment
phase; and interpretation of data quality scores in the in-
terpretation phase. Although data quality applies to all
phases of an LCA, most literature and methodologies
have focused on data quality within only the goal and
scope, inventory, and interpretation phases.

It is important to note that each level, role, and phase has
different requirements, which is why a successful data quality
assessment method must include a multi-dimensional man-
agement approach, so that the DQCs are transferable to end
users. Therefore, this paper addresses improvements to data

Flow

Model

Process

Fig. 1 Levels in life cycle inventory data
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quality assessment methods for determining the Bfitness for
use^ within the context of a multi-dimensional data quality
management perspective.

1.6 Translatability between data quality assessment
methods

Translatability between assessment methods is important
since no consensus exists within the LCA community on the
Bbest^ assessment method. Interoperability between methods
is key when compiling a model composed of datasets from
various sources. Not all DQCs required by the ISO standards
appear as indicators for all assessment methods (see Table 1).
The incompatibility of methods means direct translation from
one method to another can cause difficulty because key char-
acteristic information could be lost. The GLAD metadata
working group has addressed this issue by proposing the stor-
ing of DQCs (Ciroth et al. 2017). Figure 2 highlights the
difficulty in translatability when repositories do not store the
original DQCs and only store the score and/or the data quality
goal. Not storing the original DQC can also cause problems
when users reassess data with their user defined goal. Users
are required to locate the original data documentation in order
to assess the data quality.

2 Discussion

This discussion addresses many aspects of data quality assess-
ment and management in LCA. To adequately address data
quality assessment, the authors recommend the following: an
updated pedigree matrix, a method for data quality score ag-
gregation for LCI and life cycle impact assessment (LCIA),
and the need for DQA alongside, and not in place of or merged
with uncertainty analysis. Data quality management improve-
ments include clarification of generator, repository, and user
roles in data quality management and recognition of the need
for DQA training for LCA practitioners. We also explore the
potential and pitfalls of translating data quality scores across
assessment methods, and describe an implementation of the
recommended data quality assessment and aggregation
methods in openLCA software.

2.1 Updated data quality indicators and criteria

An updated version of the Weidema 2013 pedigree matrix is
provided in Tables 2 and 3 and is described in detail in a US
EPA data quality guidance report (Edelen and Ingwersen
2016b), and referred to here as the US EPA pedigree matrix.
The updated pedigree matrix includes two levels of data qual-
ity, the flow and the process level. Flow level indicators are
applied to any exchange (input or output) within a process
except for the reference flow, with one score for each

exchange. Process indicators are designed to be applied to unit
processes with one score for each process. Data quality sys-
tems currently implemented in major databases provides indi-
cators only at either the flow (e.g., ecoinvent) or process (e.g.,
ILCD) level. Five indicators resembling those of Weidema
et al. (2013) matrix are described at the flow level. These
indicators were kept because they are the DQIs relevant for
the flow level that could be scored in the ISO 14044 described
data quality attributes. Two new indicators are provided at the
process level. In previous matrices, all the data quality indica-
tors were not necessarily orthogonal, in that the indicators
were capturing overlapping information. In the updated table,
all indicators are independent.

The scoring criteria for each indicator in the flow pedigree
matrix were either updated or supplemented with more guid-
ance to aid in assessment. Briefly, the following changes were
made to the flow level pedigree matrix. For reliability, mea-
surements, calculations, and estimates are defined as three
distinct means of collecting data with descending reliability,
and the process of verification is defined. For temporal repre-
sentativeness, the criteria are unchanged but US EPA data
quality guidance report clarifies that the date of the actual
measurement should be assessed, and not the publication date.
This choice wasmade because data sources often reuse or refer
to previous publications, and actual data collected may be
much older. For geographic representativeness, scores are de-
fined based on the geographic scope of the data collection area
using international guidelines for definitions, an improvement
over the previous criteria requiring the user to determine if an
area is Bsimilar^ or not. There was some debate over whether
or not the geographic indicator was even relevant to data qual-
ity, as geographic differences are often truly technological dif-
ferences. However, the US EPA data quality guidance report
reinforces that any technology difference should be captured
in the technology indicator, and the geographic indicator
should just be used to capture differences in location or scope
of the data collection areas. BTechnology^ in the technological
correlation indicator was defined as consisting of four ele-
ments: process design, operating conditions, material quality,
and process scale. The prior indicator BCompleteness^ was
renamed BData Collection Methods.^ For this indicator, addi-
tional guidance is provided on the Brelevant market^ and
Badequate period of time,^ and the ranges were altered to
require higher percentages than previously used.

Application of the pedigree matrix at the flow level has not
always been clearly defined. In the case of technosphere
flows, many practitioners are uncertain whether the flow
amount or the linked process should be evaluated. For in-
stance, in evaluating a flow of steel with the amount of
50 kg as an input into a process of making a wind turbine in
the USA, what should be evaluated is the amount of 50 kg and
its associated data quality, and not the flow from a background
database that the user has chosen to model the upstream flow
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Table 2 Updated data quality pedigree matrix—flow indicators (Edelen and Ingwersen 2016b)

Indicator 1 2 3 4 5 (default)

Flow reliability Verifieda data based
on measurements

Verified data based on
a calculation

Non-verified data
based on a
calculation

Documented estimate Undocumented
estimate

or non-verified data
based on measure-
ments

Flow
representative-
ness

Temporal
correlation

Less than 3 years of
differenceb

Less than 6 years of
difference

Less than 10 years of
difference

Less than 15 years of
difference

Age of data
unknown or
more than
15 years

Geographical
correlation

Data from same
resolution

Within one level of
resolution

Within two levels of
resolution

Outside of two levels
of resolution

From a different
or unknown
area of studyand same area of

study
and a related area of

studyc
and a related area of

study
but a related area of

study

Technological
correlation

All technology
categoriesd are
equivalent

Three of the
technology
categories are
equivalent

Two of the technology
categories are
equivalent

One of the technology
categories is
equivalent

None of the
technology
categories are
equivalent

Data
collection
methods

Representative data
from >80% of the
relevant markete,
over an adequate
periodf

Representative data
from 60 to 79% of
the relevant
market, over an
adequate period

Representative data
from 40 to 59% of
the relevant market,
over an adequate
period

Representative data
from <40% of the
relevant market,
over an adequate
period of time

Unknown

or representative data
from >80% of the
relevant market,
over a shorter
period of time

or representative data
from 60 to 79% of
the relevant market,
over a shorter period
of time

or representative data
from 40 to 59% of
the relevant market,
over a shorter period
of time

or data from a
small number
of sites and
from shorter
periods

a Verification may take place in several ways, e.g., by on-site checking, by recalculation, through mass balances or cross-checks with other sources. For
values calculated from a mass-balance or another calculation method, an independent verification method must be used in order to qualify the value as
verified
b Temporal difference refers to the difference between date of data generation and the date of representativeness as defined by the goal of the project
c A related area of study is defined by the user and should be documented in the geographical metadata. The relationship established in themetadata of the
unit process should be consistently applied to all flows within the unit process. Default relationship is established as within the same hierarchy of political
boundaries (e.g., Denver is within Colorado, is within the USA, is within North America)
d Technology categories are process design, operating conditions, material quality, and process scale
e The relevant market should be documented in the DQG. The default relevant market is measured in production units. If the relevant market is
determined using other units, this should be documented in the DQG. The relevant market established in the metadata should be consistently applied
to all flows within the unit process
f Adequate time period can be evaluated as a time period long enough to even out normal fluctuations. The default time period is 1 year, except for
emerging technologies (2–6 months) or agricultural projects >3 years

a

c

a

b

b

c

Fig. 2 Data quality translatability
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with, for instance Bsteel plating/EU.^ The rationale is that the
user is modeling the amount and type of a steel material need-
ed to make the wind turbine. Using best practices, the user
should specify exactly what type of steel and where it comes
from. However, in practice, users make connections to back-
ground data and are forced to represent steel with the best
available process in his/her database. However, the choice of
what technosphere flow to use from a background database as
an input is an aspect of model level data quality and not flow
level data quality, and we recommend that the flow indicators
score should not be convoluted with this aspect of model data
quality. The updated pedigree matrix flow level indicators are
visually designed to separate intrinsic data quality indicators
from contextual indicators.

At the process level, two indicators are defined: process
completeness and process review. Process completeness is a
new indicator representing the extent to which all expected
technosphere and elementary flows are included in a dataset,
and a separate scoring table is provided just for this indicator.
The process completeness indicator is derived from the com-
pleteness DQC in the ISO 14044 standard. Process review
was inspired by a recent guidance document establishing re-
view criteria for LCI datasets which further elaborates the
basic review requirement specific in the Global Guidance
principles for LCI databases (Ciroth et al. 2015; UNEP/
SETAC 2011).

In general, data quality within LCA lacks clear definitions
for relevant terminology, specifically around indicators and
attributes of data quality. Vague and unclear definitions create
uncertainty and confusion around the proper evaluation of
data quality dimensions and undermines the validity and re-
producibility of data quality assessment results (Chen et al.
2014). Terminology such as Bsimilar,^ Bpartially,^ Bqualified,^
Bunqualified,^ Bsome,^ and Bmany^ have historically been
used within LCA pedigree matrices scoring criteria. This lan-
guage requires individual evaluators to make subjective

judgments to distinguish data quality scores. The updated ped-
igree matrix attempts to either eliminate vague and confusing
language or clearly define terms to improve reproducibility of
score results across multiple users.

The contextual aspects of data quality often require practi-
tioners to make subjective decisions on the relevance of cer-
tain data quality indicators. This has led some to selectively
apply different data quality indicators in their evaluations. For
consistency, the US EPA data quality guidance specifies that
all indicators should always be evaluated. Since the impor-
tance of indicators is situationally dependent, a practitioner
must exercise judgment when using the indicator to interpret
results. Practitioners should apply their knowledge of the sys-
tem and review all indicators together before making judg-
ments on the best use of data. Practitioners should document
the decisions about the significance of indicators in their in-
terpretation of LCA results based on the data.

A comprehensive data quality methodology should use
more than just the pedigree matrix. It is important that practi-
tioners be aware of the limitations of the pedigree matrix. Not
all important data quality characteristics are addressed using a
pedigree matrix. Some areas can only be addressed qualita-
tively through a methodology description of the LCA study
(e.g., consistency and reproducibility). The pedigree matrix is
not designed to capture all areas of data quality, but to semi-
quantitatively address certain key area to improve communi-
cation of data quality results.

2.2 Training

Updates to the clarity of the pedigree matrix are not enough to
solve the reproducibility problem identified by the study de-
scribed in the Electronic Supplementary Material. The low
reproducibility of results and scoring mistakes show a lack
of training in the proper application of data quality for a
dataset by LCA practitioners. Training in the appropriate

Table 3 Updated data quality
pedigree matrix—process
indicators (Edelen and Ingwersen
2016b)

Indicator 1 2 3 4 5 (default)

Process
review

Documented
reviews by a
minimum of
two typesa of
third party
reviewers

Documented
reviews by a
minimum of two
types of
reviewers, with
one being a third
party

Documented
review by a
third party
reviewer

Documented
review by
an internal
reviewer

No
document-
ed review

Process
complete-
ness

>80% of
determined
flows have
been
evaluated and
given a value

60–79% of
determined flows
have been
evaluated and
given a value

40–59% of
determined
flows have
been
evaluated
and given a
value

<40% of
determined
flows have
been
evaluated
and given a
value

Process
complete-
ness not
scored

a Types are defined as either industry or LCA experts
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evaluation methodologies associated with data quality evalu-
ation is necessary to ensure consistent application of a data
quality system. In LCA, current data quality systems docu-
mentation is focused on describing the system. Limited re-
sources from data quality system creators are available to
practitioners for training in the appropriate application of the
data quality system. The US EPA Guidance on Data Quality
Assessment for Life Cycle Inventory Data is stylistically
unique in that it not only describes the updated matrix, but
guides practitioners through a step-by-step example of the
application of the matrix using a test dataset (Edelen and
Ingwersen 2016b). A workshop on the application of the up-
dated pedigree matrix was offered at the American Center for
LCA XVI conference in Charleston, SC (Edelen and
Ingwersen 2016a), and the US EPA is developing an online
training module. With the adaptation of the framework that
contextual data quality continuously changes and must be re-
applied situationally, it is important that individual practi-
tioners and data collectors be offered training on the applica-
tion of a data quality system to ensure representational consis-
tency of data quality results.

2.3 Data quality management roles

A data quality management approach that encompasses a
multi-role perspective is needed in order to improve the inter-
operability of data quality within LCA. Suggested responsi-
bilities in data quality assessment, management and use are
described for data generators, data repositories, and data users
in Table 4.

Data generators can also be repositories and even users,
however the blending of these roles can lead to inadequate
documentation and confusion when improper or inadequate
documentation is provided, especially for third party users of
data. Table 4 assigns the generator the role of documentation
of DQCs, both the generator and the user the responsibility of
data quality assessment, and the repository the responsibility
of maintaining and disseminating guidance measures to en-
sure the assessment and utilization of the DQCs by the users is
supported by appropriate documentation from the generators.
Data repositories are also unique in design because they
should store data linked with its DQCs.

Identifying and fulfilling the needs of all roles is important
in order to adequately address data quality from a multi-
perspective approach. Three major data generators/
repositories (e.g. ILCD, ecoinvent and USDA) were assessed
for implementation of the data quality management responsi-
bilities identified in Table 4. ILCD, ecoinvent and USDAwere
identified as data generators and custodians. The assessment
in Table 5 highlights potential improvements in data quality
management for all three generators/repositories. In general,
DQCs are not documented and stored separately from DQ
scores. Although datasets are documented, the DQC of the

original data is either missing or partially stored in the back-
ground documentation. The lack of clear documentation of the
DQC by generators is a hindrance to the interoperability of the
data, since users must search through background documen-
tation and or find original documentation of data in order to
perform an evaluation on the contextual indicators. The
GLAD Metadata Working Group draft report proposes the
first guidance on storing DQC and is developing a list of
key characteristics that should be documented (Ciroth et al.
2017).

2.4 Usage alongside quantitative uncertainty

DQCs, as captured by the updated pedigree matrix, do not
capture uncertainty and variability in LCA data. When evalu-
ating changes to final LCA results based on model or data
uncertainty (Lloyd and Ries 2007), a more traditional uncer-
tainty or variability analysis methodology should be used. We
side with many previous scholars that data quality scores are
best used independent of uncertainty analysis (van den Berg
et al. 1999; Cooper and Kahn 2012; May and Brennan 2003).
Data quality assessment can complement uncertainty evalua-
tion and vice versa, providing a more complete understanding
of strengths and weaknesses of underlying LCI data and the
LCA study results.

2.5 Aggregation of data quality indicators in an LCA
model

We recommend using a flow-weighted average approach for
aggregating flow level data quality scores for use in interpre-
tation, as was first described by Rousseaux et al. (2001), in
Eq. (2) previously shown. This approach can be extended to
impact assessment so that data quality scores can be viewed
for LCIA scores for a given impact category, without using
any subjective weighting factors, using the following
equation:

∑n
f

LCI f � CF f ;c �LCIDQS f ;i

LCIASc
¼ LCIADQSi;c ð4Þ

where LCIADQS is the life cycle impact assessment data
quality score for a given data quality indicator, i, and impact
category, c; LCIDQS is the calculated data quality score for a
given flow, f, and data quality indicator, i, calculated in
Eq. (2); LCI is the life cycle inventory total for flow f; CF is
the characterization factor for flow, f, for a given impact cat-
egory, c; and LCIAS is the life cycle impact assessment score
for category, c.

A simple example is summarized in Fig. 3 for an LCA
model with two processes, a truck transport process and a
process for diesel fuel. This example comes from US EPA
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(2016) and it is used with LCIA characterization factors for
the human health effects of criteria air pollutants from TRACI
2.1 (US EPA 2012). The data quality scores were not provided
in the original dataset, so hypothetical scores are assigned here
for demonstration purposes. Flow level data quality scores are
assigned for PM2.5 and PM10 emissions to air that are common
to both processes. In this system, the emissions from the truck
transport process contributes >30 and >40 (PM2.5 and PM10,
respectively) times more to the life cycle inventory than the
Bdiesel, dispensed at pump^ process and therefore the aggre-
gate data quality scores are more influenced by the truck trans-
port process. If these scores were unacceptable for the data
quality goals of the study or the practitioners, the user would
be more directed to improve the data quality for the truck
transport process than the diesel process, at least to improve
the data quality for these particular results. The practitioner
may be able to use the aggregate scores to determine confi-
dence in aspects of the LCI results. In this example, the PM2.5

emissions are derived from mostly reliable sources, however
the data point with the greatest flow quantity is based on an
undocumented estimate, and the age of the underlying data is
on average older than 10 years, suggesting lower confidence
in the results. We do not recommend aggregating flow data
quality scores across the categories (e.g., taking the average of

the five aggregate scores) in an ISO14044-compliant LCA.
Just like in regard to scores from different LCIA indicators
that represent independent categories, combining them is a
value-based decision.

Process level data quality scores will generally not be able
to be aggregated over the life cycle, because processes have
different units that cannot be aggregated, as in the example
above, where the first process has units of mass and the second
a unit of mass × distance. There may be an exception to this
rule for certain LCA models, such as environmentally-
extended input-output models where the units are all in a cur-
rency, where a weighted-average aggregate process score may
be calculated.

The updated data quality pedigree matrix and the aggrega-
tion method for data quality scores have been demonstrated
with application to a gate-to-gate LCI for acetic acid produc-
tion (Cashman et al. 2016), and for a new environmentally-
extended input-output model of the US economy (Yang et al.
2017).

2.6 Use of data quality scores in existing datasets

Practitioners typically assemble LCA models using back-
ground database LCI or other LCI prepared for a different

Table 5. Data quality
management assessment of three
data generators/repositories

Responsibility ILCD Ecoinvent USDA

Documentation of inventory DQCs

Documentation of DQGs ✓ ✓ ✓

Documentation of DQ scores for data ✓a ✓

Developing/Adopting DQC documentation guidelines

Developing/Adopting DQA guidelines ✓ ✓ b

Developing DQA training

Storage of DQCs

Storage of data quality scores ✓a ✓

a Only compliant datasets
b No official guidance; Cooper and Kahn (2012) discusses methodology

Table 4. Roles in LCA data
quality assessment, management
and use

Responsibility Generator Repository/ custodian User

Documentation of inventory DQCs ✓

Documentation of DQGs ✓ ✓

Documentation of DQ scores for data ✓ ✓

Data quality scores linked with interpretation of LCA results ✓

Developing/Adopting DQC documentation guidelines ✓

Developing/Adopting DQA guidelines ✓

Developing DQA training ✓

Storage of DQCs ✓

Storage of data quality scores ✓
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end purpose than the practitioners’ study goal. The existing
datasets might have data quality scores associated with them.
Practitioners may use these scores to evaluate the datasets, or
may intend to use these scores along with their own scores for
their primary data to calculate aggregated scores as in Eqs. (2)
through (4). Previous papers have proposed, described, or
implemented data quality aggregation methods, the implica-
tions for the use of existing data with data quality scores for
aggregation was not addressed. These scores may come from
the same or a different pedigree matrix system and review of
the scores themselves may or may not have been conducted
with any dataset or study review. For these reasons alone,
practitioners should not use the existing scores as they are
for either evaluation or for data quality aggregation, with
few exceptions. Table 6 provides a key that might be cautious-
ly used for data quality score translation to the US EPA data
quality system from datasets scored using the same system or
some of the alternative systems reviewed above.

The next question that arises is how many datasets from a
background system would need to be scored, and how to

select those datasets. With newer background datasets
consisting of 10,000 or more processes, it would be infeasible
to re-evaluate data quality for all background datasets. If the
flow quantity-weighted scoring algorithms in Eqs. (2) and (4)
are used, the practitioners can prioritize the scoring based on
the influence of the flows in the total LCI or impact score
calculations. For instance, building on the example summa-
rized in Fig. 3, if the process BTruck transport^ were from a
background database, the flow-weighted aggregation method
would suggest that this process is very influential on the LCI
and LCIA results related to PM emissions and human health
impacts and that data quality of this process should be
rescored before calculating the aggregated data quality scores.

2.7 Application in LCA software

Working with GreenDelta, the handling of data quality assess-
ment in openLCA has been modified in a number of ways to
support these recommendations starting with version 1.6.1.
The user can now define one or more data quality systems in
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tinUtnuomAwolFnoitceriD
Output Diesel, dispensed at gk1pmup

E80.2ria/5.2MPtuptuO -05 kg 1 2 3 4 5
E90.2ria/01MPtuptuO -05 kg 3 3 3 3 3

Process 2 - Truck transport
tinUtnuomAwolFnoitceriD

Input Diesel, dispensed at E20.3pmup -02 kg
Output Truck mkt1tropsnart

E00.2ria/5.2MPtuptuO -05 kg 5 4 3 2 1
E97.2ria/01MPtuptuO -05 kg 1 1 1 1 1

Life cycle inventory for 1 tkm Truck Transport
Direc�on Flow Contribu�ng Process Amount Unit
Output PM2.5/air Truck transport 2.00E-05 kg 5 4 3 2 1
Output PM2.5/air Diesel, dispensed at pump 6.27E-07 kg 1 2 3 4 5
Output PM10/air Truck transport 2.79E-05 kg 1 1 1 1 1
Output PM10/air Diesel, dispensed at pump 6.31E-07 kg 3 3 3 3 3

E60.2LATOTria/5.2MPtuptuO -05 kg 4.9 3.9 3.0 2.1 1.1 LCIDQS
E68.2LATOTria/01MPtuptuO -05 kg 1.0 1.0 1.0 1.0 1.0 LCIDQS

Life cycle impact assessment method (TRACI 2.1 Human Health Criteria category)

Direc�on Flow
Characteriza�on
Factor Unit

gk1ria/5.2MPtuptuO PM2.5-eq/kg
gk32.0ria/01MPtuptuO PM2.5-eq/kg

Life cycle impact assessment score
LCIA Score Unit

E17.2LATOT -05 kg PM2.5-eq 4.0 3.2 2.5 1.8 1.1 LCIADQS

Diesel,
dispensed at
pump

Truck
transport

Fig. 3 Example aggregate flow
level data quality scoring for a
simplified two process model
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Table 6 Key for adaptation of existing data quality scores for use in a new model that uses the USEPA DQA method

System Type Level Data quality indicator Equivalency USEPA DQI Recommendation

USEPA Intrinsic Flow Flow reliability = Flow
reliability

Use as is

Process Process review = Process
review

Use as is

Contextual Flow Temporal correlation = Temporal
correlation

Adjust scores to reflect time variation
between Bold^ and Bnew^ study

Flow Geographical correlation = Geographical
correlation

Rescore

Flow Technological correlation = Technological
correlation

Rescore

Flow Data collection methods = Data
collection
methods

Rescore

Process Process completeness = Process
complete-
ness

Adjust scores for any new expected
flows

Weidema et al.
(2013)

Intrinsic Flow Reliability ≈ Flow
reliability

Use as is for score of 1, rescore for others
if metadata available

Flow Uncertainty correlation X No equivalent

Flow Precision X No equivalent

Contextual Flow Completeness ≈ Data
collection
methods

Rescore if metadata are available

Flow Temporal correlation = Temporal
correlation

Adjust scores to reflect time variation
between Bold^ and Bnew^ study

Flow Geographical correlation ≈ Geographical
correlation

Rescore if metadata are available

Flow Further Technological
correlation

≈ Technological
correlation

Rescore if metadata are available

LCA Digital
Commons
(USDA)

Intrinsic Flow Reliability and
reproducibility

≈ Flow
reliability

Rescore if metadata are available

Flow Uncertainty X No equivalent

Flow Precision X No equivalent

Contextual Flow Flow data completeness ≈ Data
collection
methods

Rescore if metadata are available

Flow Temporal correlation ≈ Temporal
correlation

Rescore if metadata are available

Flow Geographical coverage ≈ Geographical
correlation

Rescore if metadata are available

Flow Technological coverage ≈ Technological
correlation

Rescore if metadata are available

ILCD Intrinsic Process Precision/uncertainty X No equivalent

Contextual Process/model Methodological
appropriateness and
consistency

X No equivalent

Process/model Completeness ≈ Process
complete-
ness

Rescore if metadata are available

Process Time-related
representativeness

≈ Temporal
correlation

Rescore if metadata are available

Process Geographical
representativeness

≈ Geographical
correlation

Rescore if metadata are available

Process Technological
representativeness

≈ Technological
correlation

Rescore if metadata are available

Process Technological coverage ≈ Technological
correlation

Rescore if metadata are available

Equivalency: B=^ information captured in this indicator directly corresponds to a USEPA DQI, B≈^ information captured in this indicator is similar to a
USEPA DQI, BX^ no equivalent is found within the USEPA system
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openLCA in the pedigree matrix format. For each system
defined, a user can determine whether or not these systems
should be used with uncertainty analysis. Within any process
in the database, a data quality system can be chosen for use at
the flow or process level. Only one flow and one process level
data quality system can be defined for each model. Analysis
options have been added that will now perform aggregation of
data quality scores using the algorithm in Eq. (2) and Eq. (4)
by default, but also using other algorithms, such the use of a
maximum score as in Eq. (3) or a variation of Eq. (4), a
weighted squared average. Options are available as well for
how data quality scores are rounded (normal rounding by
default) and how missing scores are handled (omitted by de-
fault) in the aggregation. The new data quality results provide
statistics on the percentage of data quality scores provided in
the LCI for each DQI, show process data quality for all pro-
cesses used in a product system along with the total require-
ment for each process, and show aggregated data quality
scores for elementary flows in the LCI totals and LCIA scores
along with the LCI amounts and LCIA results. The openLCA
JSON-LD format was also expanded to capture the data qual-
ity system information, so when datasets are transferred they
will include a definition of the data quality system used in the
datasets. The US EPA pedigree matrix is available in JSON-
LD format as two systems (one each for flow and process
levels) for users to import into openLCA through the
Environmental Dataset Gateway (http://edg.epa.gov) and
openLCA (http://www.openlca.com) websites.

3 Future work

3.1 Interoperability and limitations

Data quality scores are, as a general rule, not translatable from
one methodology to another. There is a current effort by the
GLAD Metadata Working Group to improve data quality in-
teroperability (Ciroth et al. 2017). This effort focuses on the
need for standard documentation instead of a standard data
quality assessment methodology, because as Table 6 shows,
direct translation between methodologies is not always possi-
ble. It is important that users of data quality methods under-
stand the situational dependency of data quality and not use
data quality indicator scores from previous assessments for
any of the contextual indicators, as this practice will be mis-
leading in aggregate data quality calculations.

3.2 Additional data quality levels

Although the updated pedigree matrix includes a new multi-
dimensional component to capture flow and process data qual-
ity, it fails to capture all dimensions of LCA data and models.
LCIA data quality presents several unique differences from

LCI data quality. Unique challenges to LCIA data quality
include, but are not limited to the following: lack of scientific
knowledge of environmental impacts, inability to connect ag-
gregated LCI data with environmental impacts, high level of
input data into assessment models (e.g., toxicity, persistence,
bioaccumulation, and equivalency factors), and quality of as-
sumptions made by assessment models (US EPA 1995; Bare
et al. 1999; ISO 2000).

3.3 Automating data quality judgments

A certain amount of variance is to be expected with data qual-
ity since it relies heavily on the user’s personal judgment,
especially since data quality is largely contextual. The high
amount of subjectivity in the production of data quality judg-
ments has an impact on the trustworthiness and added value of
data quality scores. The rapid increase in data generation
coupled with the inability of humans to manually assess data
at the same rate has driven efforts to automate or partially
automate data quality (Isaac and Lynes 2003). Current LCA
data quality methods require data generators to document data
quality and then individually translate documentation into
data quality scoring. Wang et al. (2002) propose the novel
concept of using an automated data quality reasoner. The data
quality reasoner is a knowledge-based approach for dealing
with the subjective, decision-analytic nature of data quality
judgment. The ability to use objective terminology to delin-
eate differences in scoring of criteria is a key step towards
semi- or fully automating data quality judgments.

4 Conclusions

LCA practitioners continue to struggle to reproduce data qual-
ity scores and to fully evaluate and use these scores in inter-
pretation of LCA results. This paper summarizes improve-
ments to data quality indicators and associated guidance is-
sued in a US EPA data quality guidance report (Edelen and
Ingwersen 2016b). The guidance does not recommend a ma-
jor departure from the common pedigree approach described
by Weidema et al. (2013), but intends to increase clarity and
consistency in application to make scoring more objective and
useful. Indicators are defined at the flow and process levels
and the contextual nature of data quality assessment is empha-
sized. More guidance is generally given on performing data
quality assessment, and the need for more practitioner training
is expressed. Roles in management of data quality information
are outlined for data generators, data repositories, and data
users. A method for data quality aggregation is proposed that
extends earlier work (Rousseaux et al. 2001) to provide ag-
gregate data quality scores for LCIA results. Initial recom-
mendations are made on how to use existing data quality
scores from a background database along with new scores,
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including mappings of US EPA-based scores and other sys-
tems. The use of data quality is recommended alongside, and
not mixed with, quantitative uncertainty assessment. The new
data quality system and aggregation methods can now be used
in openLCA software. Future work is needed to better address
interoperability of data quality scores between systems, to
automate data quality scores, and to extend their scope to
cover other components of LCA data including the model
level and to LCIA characterization factors.
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